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Topic Introduction - Loneliness and QoL

“Loneliness is the unpleasant experience that occurs e Alarge amount of people
when a person's network of social relations is regularly feels lonely
deficient in some important way, either

o N ) e Thisis predicted toincrease
quantitatively or qualitatively.” - Perlman and Peplau P

even more in the future

“WHO defines Quality of Life as an individual's e Loneliness can lead to stress, depression
perception of their position in life in the context of and other psychological effects

the culture and value systems in which they live and

in relation to their goals, expectations, standards  Loneliness may increase the

and concerns.” - WHOQOL Group likelihood of early mortality

e Extensive use of internet and social media
linked to increased feelings of loneliness



Research Question

Challenge: People don’t like to talk about loneliness, about being lonely or the extend of their loneliness

Can we leverage the ubiquity of smartphones in people’s lives to help assess this problem?



Methodology

- Introduction

Recruitment through online questionnaire
Three subjects participated in study
Study lasted one month (April - May 2017)

Mixed-methods strategy
o Provides depth and breadth
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Methodology

- Assessing Loneliness

UCLA Loneliness Scale
o  Version1(1978)
o  Version 2 (1980)
o  Version 3(1996)

Three-ltem Loneliness Scale (2004)

O  Short version of UCLA Loneliness
Scale for large-scale surveys

Danish Loneliness Scale (2007)

o} Translation of UCLA Loneliness Scale




Methodology

- Experience Sampling Method

e Flexible for different usage scenarios
e Samples during actual experience

e Preventsrecall bias

“a research procedure for studying what people do, feel, and
think during their daily lives, It consists in asking individuals
to provide systematic self-reports at random occasions during
the waking hours of a normal week.” - Larson and Csikszentmihalyi
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relationer

Fgder du dig udenfor lige nu?

Sletikke O O Q!hejgrad

Fgler du dig isoleret fra andre lige nu?
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nu?

Slet ikke O O Olhcz)jgrad

[ Save Response




Methodology

- Smartphone Sensing:
mQolL-logger

Developed by mQol Living Lab
Utilizes ubiquity of smartphones

Collects quantitative data from a
range of smartphone sensors both
periodically and on specific events

Automatically synchronizes data
with remote mQol server

Anonymizes data sent to server




Methodology

- Day Reconstruction Method

Assess how subjects’ spend their time
in the last 24 hours

Complete overview of the whole day
Doesn’t disturb actual experiences

Evokes context to ensure good recall

Used with smartphone sensing data to
provide additional context as part of
mixed-methods approach




Collected Data Summary

Subject | Expected Responses Collected Responses Coverage
S1 120 97 80.83%
S2 120 46 38.33%
S3 120 106 88.33%

Subject | Expected Hours Collected Hours Coverage

1 720 393.95 54.72%
2 720 342.67 47.59%
B 720 331.90 46.10%
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Extract

_ . Extract
Features | Merged Data - Labels

Cluster Count Percentage
Data Analysis (I) e

0826 52.83%
School 4695 25.24%

- Location Assessment Work 844 4.54%
None 3233 17.38%

e OnlyCell IDs available - no GPS
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Data Analysis (I)

- DataMerging

Feature Extraction

®ESM

®ESM

o ESN

07:00

o  Summary of datain time window
Usage counts of common apps
Time spent in semantic locations
Time spent connected to networks

Count of times spent doing specific
physical activity (still, walking, running, etc.)

46 observations of 47 features
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’ f Label
Train/Test Split Categorization

H Feature Selection

Testing Data

Data Analysis (Il)

- Feature Selection &
Label Categorization

Improve computational performance

and decrease complexity of models

e Variance threshold

Hyperparameter
ini I Tuning Pick Top E‘/;’_lu%?te
Training Data Model ina
Cross-Validation Model
_

o Remove features with zero variance

e Variableranking

o Select top-13 using ANOVA F-test

Feature

Description

applications_used.calendar_count
applications_used.email_count
applications_used.messenger_count
applications_used.mobilepay_count
applications_used.weshare_count
cell_ids_service.cluster_school_percentage
cell_ids_service.cluster_unclassified_percentage
ping_service.cellular_percentage
ping_service.wifi_home_percentage
ping_service.wifi_percentage
user_activity.still_percentage
user_activity.tilting_count
user_activity.tilting_percentage

Times the Calendar app was opened
Times the Email app was opened
Times the Messenger app was opened
Times the MobilePay app was opened
Times the WeShare app was opened
Time spent at school location

Time spent at unclassified location
Time spent connected to cell towers
Time spent connected to home WiFi
Time spent connected to WiFi

Time spent with phone being still
Times phone has been tilting (moving)
Time spent with phone tiling (moving)

Classifier Comparison (13 features, 3-fold, 10 iterations)
[Ordinal Labels]
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Classifier Comparison (13 features, 3-fold, 10 iterations)
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Lapel 3 Feature Selection
Categorization
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Model Model
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Data Analysis (ll)

- Classification
e Dataissplitinto training and testing
to reduce overfitting or underfitting
e Nine common classifiers compared
e Cohen’s Kappa performance measure
o  Helps with unbalanced classes
e Hyperparameter tuning
e Cross-validation

o 10iterations of 3-fold cross-validation
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Ton Confusion Matrix Confusion Matrix
Train/Test Split H c abel H Feature Selection [All Data] [Test Datal
ategorization

Hyperparameter
. I Tuning Low Low
Training Data
Cross-Validation

Testing Data

Medium -| Medium

True label
True label

Data Analysis (ll)

- Final Model: Random Forest
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e Good performance on all data

Dataset  s-performance

Training 0.69
e Bad performance on test data Testing 0.60
Complete 0.87

e Might be overfitted due to low
amount of data rows available
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Research Findings

Links between physical activity and
loneliness, as seen in other studies

Links between semantic location
near other people and loneliness

No links between social media use
and loneliness, as seen in other studies

Findings not generalizable

Rank Feature Gini Importance
1 applications_used.email_count 0.23
2 user_activity.still_percentage 0.19
3 cell_ids_service.cluster_school_percentage 0.1
4 ping_service.cellular_percentage 0.09
5 ping_service.wifi_percentage 0.08
6 cell_ids_service.cluster_unclassified_percentage 0.07
7 applications_used.messenger_count 0.07
8 user_activity.tilting_percentage 0.06
9 user_activity.tilting_count 0.05

10  applications_used.calendar_count 0.03
1 ping_service.wifi_home_percentage 0.03
12 applications_used.weshare_count 0.00
13  applications_used.mobilepay_count 0.00
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Conclusive Remarks

e Thescope of the study is very limited, inhibiting the ability to make generalizations
e We both confirm and refute links found in previous studies
e Wefind links not seen in previous studies

e Work hints that it might be possible to computationally model loneliness
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Future Work

e Increase generalization of results by including more subjects

e Operationalize resulting classification model to be used as part of real-life applications
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